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Discrete kink dynamics in hydrogen-bonded chains: The one-component model
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We study topological solitary wave&inks and antikinks in a nonlinear one-dimensional Klein-Gordon
chain with the on-site potential of a double-Morse type. This chain is used to describe the collective proton
dynamics in quasi-one-dimensional networks of hydrogen bonds, where the on-site potential plays the role of
the proton potential in the hydrogen bond. The system supports a rich variety of stationary kink solutions with
different symmetry properties. We study the stability and bifurcation structure of all these stationary kink
states. An exactly solvable model with a piecewise “parabola-constant” approximation of the double-Morse
potential is suggested and studied analytically. The dependence of the Peierls-Nabarro potential on the system
parameters is studied. Discrete traveling-wave solutions of a narrow permanent profile are shown to exist,
depending on the anharmonicity of the Morse potential and the cooperativity of the hydroger(thend
coupling constant of the interaction between nearest-neighbor pyotons
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[. INTRODUCTION separated by a potential barrier, so that the two degenerate
ground states of the chain--X-H-.-X-H-.-X-H---
Hydrogen bond¢H bonds play a crucial role in the struc- and---H-X..-H-X..-H-X.-. are assumed to exist. An-
ture and the dynamics in a whole variety of systems rangin@ther important property, more specific for biological sys-
from ferroelectrics to biomolecules. They are of central im-tems, is that the height of the potential barrier crucially de-
portance in biology, when reactions are considered at mopends on the distance between adjacéntions. Using these
lecular level. In bioenergetics, they appear even more crucigiroperties as the main features of HB chains, a number of
because they enable transfers of protons from one molecutee-dimensionatwo-sublatticemodels, whose dynamic be-
to another one in networks or chains formed via hydrogerhavior is governed by thsolitontheory[4], have been sug-
bonding[1]. gested and studied extensively. These solitonlike theories are
More specifically, H bondE2] are interactions linking two based on the well-knowrcooperativity of the hydrogen
molecules or ions, for example, O, N, F, and Cl atoms, or inbonding, simply defined through the coupling of protons in
general any pair of hydroxyl groups, which may be denotedhe nearest-neighbor hydrogen bridges of the chain.
by X, via a hydrogen iorfproton) H*, forming a hydrogen- Since the HB chain is a diatomic lattice, the mechanism
bonded (HB) bridge X-H---X as shown schematically in of hydrogen bonding involves two types of particle displace-
Fig. 1. The ion to which the proton in this bridgd bond is  ments. LetQ, be the displacement of threh heavy ion from
more tightly linked is called the hydrogen donor, whereas theequilibrium andq,, be the displacement of the proton from
other ion is the hydrogen acceptor. More precisely, the prothe middle of thenth unit cell, when the adjacent ions are
ton is coupled to eactX™ ion through a pair ion-proton found in equilibrium(i.e., Q,=Q,.1=0). These displace-
interaction potential of the standard tygdorse, Lennard- ments are labeled according to the sequence
Jones, etg.with an equilibrium distance,, which necessar- {...,Qn-1,9n-1:Qn+0n:Qn+1,9dn+1, - - -}- Then the gen-
ily has a finite dissociation energy as te - - H distance eral and the most simple model for the proton transfers in
tends to infinity. such a diatomic chain can be given through the two-
As usual, the total potential for the HB proton is of a sublattice Hamiltonian, consisting of two paft:
double-well shape, but this can occur only if the motion of
the heavy ions along the H bond is appropriately constrained,
so that eithel(i) a sufficiently strong interactiotrepulsion
between theX™ ions that does not allow the ions to get
closer to each other than by a distance less than or equal to
2rq or (ii) a periodic substrate potential with period exceed-
ing 2rq is additionally involved. In this way, a one-
dimensional network of hydrogen bonds can be formed as a
diatomic chain of alternating heavgion) and light (proton
particles coupled nonlinearlge.g., via a Morse-type poten-
tial, as in Ref.[3]), whereas the second-neighb@on-ion
and proton-protoninteractions are involved in the harmonic
approximation. Under certain conditions on the ion-ion cou-
pling discussed in Ref.4], the proton in each H bond of
the HB chain can be found in two equilibrium positions FIG. 1. Schematics of interactions in the hydrogen bond.

H=Ho+Hign. 6
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The first part ences in the behavior of soliton solutions treated in the
continuum limit and their spatially discrete relativEss].
The discrete versions of the partial differential equations
brings about a number of critically important modifications
to the dynamics. The moving kinks of the continuum theories
with become propagating structures that decelerate by emitting
. radiation as they traverse the lattice sites. This ultimately
Up=0n=2(QntQns1) and pr=Qni1=Qn, (3  prakes the structures and brings them to rest, or “pins” them.

The above results has been obtained for the conventional

describes the proton kinetic energy, the nearest-neighbfqqels such as the discrete sine-Gordon éficthains. For
proton-proton interaction, and the intrabond proton energy, mqre general class of models, some interesting and intrigu-
that depends on the dlsplac,ements of the protons from thﬁlg results have been obtained. Thus, it has been shown that
midpoints in the H bondsy,’s, and the relative distances he shapeof the on-site(in our case, the intrabond proton
between the nearest-neighbor, iqnss, whereas the second gnergy potential is a factor of particular importance for
(pure heavy-ionpart modeling soliton motion in physical systems. To study this
1 1 1 effedq;z g’eyrarg agd Remoisserﬁdﬂ] rrllaveh introde(r:]ed a
- ZMO2+ ZK. p24+ = 2 modified sine-Gordon system, where the shape of the on-site
Hion= 2, 2MQnF 3 Kioni ™ 5 KeulQn @ potential differs sufficigntly from the sine function. They
found that if the barrier between the potential wells is flat
describes the kinetic energy of th€" ions, the coupling enough, the Peirels-Nabart®N) barrier does not decrease
energy between the nearest-neighbor ions, and the interactighonotonically with the coupling constant, as in the ordinary
energy of theX™ ions with a possible substrate.g., formed  discrete sine-Gordon chain. It decreases with oscillations, so
by the walls of a pore crossing a membrarigere the over-  that the PN barrier experiences dips, where it get lowered by
dot denotes differentiation on time The proton and ion an order of magnitude. Latgt8], it was found that if the PN
masses are denoted Iy, and M, respectively. Similarly, barrier decreases nonmonotonically, there exist certain ve-
Kp, Kion, @andKg,, stand for the stiffness constants of the |ocities, at which even very discrete kinks propagate with
interaction between the nearest-neighbor protons, theonstant shape and velocity. Everywhere in between these
nearest-neighbor ions, and the chain ions with the substratgelocities, there exist kinks with oscillatory asymptotics
respectively. It is important that the intrabond proton energynanopterons Approaching the problem from another side,
is given in terms of a general double-well poten¥&lu,p)  Schmidt in Ref[20] has constructed a Klein-Gordon model
as a function of two variabless, the proton displacement that allows an exact moving kink solution of the form
from the middle of the hydrogen bond, apd the relative tanhfi—vt) for some specific value of velocity. Further-
ion displacement. If additionally thigdimensionlessfunc-  more, Flach and co-authof€1] have shown that for this
tion is normalized according to the relatioW¢0,0)=1 and  model the PN barrier is nonzefwhenv #0). It was also
V(*a,0)=0, where*a are the positions of the minima in shown that kinks of the discrete sine-Gordon equation with
this function, there, is the barrier height of the proton po- topological charges greater than 1 exhibit some features,
tential in the H bond. When the heavy ions are displacedimilar to those, described above, including free propagation
from their equilibria, this potential is deformed, with its bar- at some selected velocitiésee Refs[15,18,19). Note that
rier top moved together with the ions. if we step out from the Klein-Gordon class of discrete mod-
There have been numerous studiélof soliton solutions  els (for instance, by introducing anharmonicity into the in-
to the equations of motion governed by the Hamiltor(iB®-  terparticle interaction some new phenomena related to the
(4) including also one-component models, where the heavkink mobility can appear, but this is out of the scope of the
ions X~ are assumed to be fixd&—11]. All these studies present paper. In this context, a few papesee Refs[22,23
refer to the continuum limit, which presumes the existence otind references thergishould also be mentioned.
a sufficiently effective cooperativity of hydrogen bonding or,  Thus, owing to the importance of discreteness effects in
in other words, the interbond proton-proton couplikg is  the kink dynamics, it would be of great interest to apply
required to be strong enough. However, according toathe these findings first for the one-component model of proton
initio calculations of the proton-proton interaction in realistic transport in HB chains and then for the two-component
HB chains by GodziK12], K =41 kcal/mol A2. This mag- model given by the Hamiltoniafl)—(4). In this context, as
nitude appears not to be sufficient fofrae propagation of found by Duan and Scheing24,25, a pair of Morse func-
the ionic defects along the HB chain with realistic values oftions, placed tail-to-tail so as to allow for the approach of the
the potential barrier height,. The reduction of this barrier proton towards the acceptor while it is departing from the
on the basis of the two-component model was also shown tdonor (see Fig. 1, provides the best framework for repro-
be not enough to provide a free soliton regime, and the ionicucing their potentials obtained froaM initio calculations. It
defects in HB chains with realistic parameter valjé8] is important that the Morse-type functions contain param-
were shown to be very narrow objedts4]. eters with clear physical meaning, which vary little from one
On the other hand, a rapidly increasing number of publi-H bond to the next one in HB systems.
cations over recent yeafsince the pioneering work of Pey- The aim of this paper is to investigate the properties of the
rard and Kruska[15]) have demonstrated significant differ- one-dimensional Klein-Gordon chain with the on-ditgra-

m,., K
Ho=2 | 58+ 5 (G 1= )+ £oV(Un,pn) |, (2
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bond potential of the double-Morse type. We are going to 18—
find both stationary and dynamignoving kink solutions 18
and show that kinks can be mobile even if they are very
narrow. s

The paper is organized as follows. In the following sec- 12}
tion, we present the Hamiltonian and the equations of motion 3 , 3
for the one-component model. In Sec. Ill, we study the prop- = 2
erties of the stationary kink solutions. In Sec. IV, the Peierls- 08f
Nabarro potential for the kinks is investigated. Section V is sk 1
devoted to the studies of kink mobility. Conclusions are
given in Sec. VI. 04

0.2r
Il. THE DOUBLE-MORSE PROTON POTENTIAL Y Err—— 5 T o o3

u
In the limit where the heavy ions are fix¢mhmobile) at

a same distance forming a uniform lattice, we deal only FIG. 2. The shape of the intrabond potentgli) given by Eq.
with the first part of the Hamiltoniaf2), whereq,=u,. In  (6) with a=0.25 for 3=5 (curve 3, =20 (curve 2, and 3=50
what follows we adopt the dimensionless description, wherdcurve 3.

for the dimensionless proton displacemapt| we keep the

same notatioru, and use the time unity=1/+/eq/m,. In %, Tesu<-a
these dimensionless variables, the Hamiltor{@nreads _ 0, u==*a
lim V(u)= ®
ﬁ-;w l, _a< Ll<a
1. K
H=2 |SUi+ 5 (Una=u)*+ V)| (9) ® a<u<e.

The corresponding equation of motion is the well-known
discrete nonlinear Klein-Gordon equation:

Here and in what follows, the overdot denotes the differen-
tiation with respect ta=t/ty, andk =Kl 2/g, is the dimen-
sionless proton-proton coupling constant. ©

~ As described in Introduction and illustrated by Fig. 1, the jere and in what follows, the prime denotes differentiation
intrabond proton potential(u) can be formed as a result of of 5 function with respect to its argument.

the superposition of two pair ion-proton interaction poten-  Before embarking on a complete analysis of the discrete
tials placed tail-to-tail. According to thab initio studies of  equation (9), we calculate the dispersion law of small-
Duan and Scheind4,29, these potentials are preferred to ampjitude waves around one of the two ground states. As a

be of the Morse type. As a result, the potentilu) is @  result, this law is given by the following equation:
symmetric double-well function with minima at=+a and

Up=x(Uyy1—2Upt+Up_1)—V'(uy), Nn=0,=1,... .

a maximum au=0 [4,26,27: w?(q) = wj+2x(1—cosq),
—coshu)|? _ \/m _ 28
V(u)= QTZ(_IB) ) a:COSh:ﬂa). (6) Wo= 2a_ 13_ tanh( Ba/2) : (10

The gap of the spectrum depends on the param@teior
The inequalitya>1 ensures the double-well form of the large values of3, it increases linearly withg.
function (6). Throughout the paper we take=0.25. The
potential(6) is normalized so that the barrier height always Ill. KINK STATES, THEIR STABILITY,
equals unity. Its shape for different values@®fis shown in AND BIFURCATIONS
Fig. 2. As can be seen from this figure, the paramgter

determines the curvature or flatness of the barrier and its In this section, we start from the classification of possible

shape stongy depends on this parameter. We assume JELCTANSINTISales To comu Bese s e e
values to range over the whole half axis.@<ec. For small 1ug 9

8, the barrier is rather narrow, being the limiting case of theof the stationary partu,=0) in the Hamiltoniar(5) and the
#* model, i.e., Newton iteration method for solving the time independent

nonlinear set of equations that originate from E@s:

limV(u)=(1-u?a??2. (7) k(Upi1—2Up+tUn_1)=V'(uy), n=0,+1,....
B—0 (12)
These equations can be rewritten as a two-dimensional map:

IncreasingB makes the barrier more flat and the wells more
narrow, so that the other limit is Pn+1=Up,
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solutions with inversion symmetry defined by E¢s3) and

:O'zh (14) switch their stability, while varying the system param-
3 of (@) 1 eters. The second one is the appearance of different types of
02 kink solutions. For the first of these types, the symmetry
’ . relations(13) and (14) are not valid anymore, whereas the
40 % 53 % &0 other one is symmetric with a zigzaglike profile at it center,
o - but still has monotonic asymptotics g — .
=5 of ®) A. An exactly solvable limit
-0.2} . 1 To understand better the effect of stability switching, it is
40 pr 50 55 60 instructive to consider the limi8— oo, resulting in a poten-
n tial behavior similar to what is studied in RéfL8]. In this

limit, the double-Morse potential takes the form of E§),

for which the system of equations of motighl) becomes
exactly solvable because the particlgsotong can appear
only either in the wells or in the flat region of the proton
potentialV(u). There exists an infinite, but a countable set of
étationary kink solutions with an arbitrary number of par-
ticles, m=0,1, ..., lying on the barrier. This number

FIG. 3. Profiles of monotonic symmetric kinks wig=5 and
«=30: (a) ion-centered kink andb) proton-centered kink.

Ups1=k V' (Up)+2U,— Py, N=01,.... (12

In general, maps of this type are chaotic. However, an on-sit
potential, for which the magl2) is integrable, has been ) i . g :
found in Ref.[28]. Previous knowledge on kink solutions in “”'ql%e'y defines a kanant|k|nk) solution. The set of these
the most popular cases of the discrete nonlinear KleinSolutions can be written as
Gordon lattices such as the sine-Gordorpdrchains implies p m
the existence of only two stationary kink states. These states —a, —o<n=snyg— -1
possess inversion symmetry with respect to the center of the 2
kink, being monotonic functions on the lattice. They connect n—ng+1/2 m m
two hyperbolic fixed points of the map,—(,—a) and U=y 28—77  No— 5 ~1l<n<net=
(a,a), which are the ground states of the chain.
Adapted to our case of a HB chain with the numbering of a,
ions and protons according to the sequence \
{ s aQn—laqn—vanvqnan+1aqn+11 e -}! one of these (15)
stationary states, which has its center positioned at a heavty ) )
ion [call it an ion-centered kinkantikink)], say with a num-  for the kink centered on thegth ion (m=0,2,...) and
ber ny, is dynamicallystable whereas the other, with its

m
Ng+ ESI"I<OO

center positioned in the middle of anth H bond, i.e., in (. Cpepep ML
between thength and the Q5+ 1)th ions[call it a bond- or ’ - 2
proton-centered kinkantikink)], is dynamically unstable n—n m+1 m+1
The symmetry of the ion-centerddn the ngth ion, in be- u,=¢ 2a 0, No— <n<ny+—— (16)
tween H bondsiy—1 andng) kink (antikink) is defined by m+1 2 2
the relations m+1

a, Ng+ Tsn<m,

Uny-n="Uny+n-1, N=0x1,. .., (13 .

. _ for the kink centered on thegth H bond (m=1,3,...).
whereas for the proton-centerdd the middle of thenoth H - Simjjarly, the analytical expressions for the antikink solu-

bond, in between ions, andny+ 1) kink/antikink, the sym-  tjons can be obtained. These stationary solutions can be

metry relation is given by found using either energy arguments based on the Hamil-

tonian (5) or directly from the equations of motiofiLl),
Ung-n="Ungrns N=021,... . (14) Where( ) y a @)

The solutions of these types certainly exist also in our model, —o, —m<u<-—a

as illustrated by Fig. 3. However, their stability properties .

appear to be much more complicated and are discussed be- limV'(u)=4 0, —asu<a 17)

low. B ®, a<u<o.

In general, a deformation of the barrier shape in the po-

tential V(u) leads to a more rich family of kinkantikink) The energy of both thes@ntikink solutions in the limit

solutions. This has been observed in previous studieg— « is easily calculated and for any integar=0,1, . . ., it

[17,18. The first feature caused by the deformation of thereads

proton potential6) with increasingB is the phenomenon of

stability switching according to which the two types of kink Em=Em(x)=m+2ka%(m+1). (18
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FIG. 4. Dependence of the kink energy,, m=0, 1, 2, 3, and

4, given by Eq.(18), in the exactly solvable limi{3—« on the
coupling parametek.

FIG. 5. Dependence of energy f@=10 on coupling« for
symmetric ion-centered kinkcurve 1, symmetric proton-centered
kink (curve 2, and zigzag-like kinkgcurves 4 and b The inset

. . . shows more detailed behavior in the vicinity of stability switchings
As illustrated by Fig. 4, where the linear dependences of th%nd curve 3 corresponds to the kink with asymmetric profile. Solid

_energyEm on k are plotte_d for differenm’s that the cross- lines correspond to stable states and dashed lines to unstable ones.
ings of these dependencies occur at some values of the cou-

pling parametel. The most interesting points in Fig. 4 are

the crossings for the states with the energies that corresport ©f which is given by Eqs(13), whereas curve 2 corre-
to adjacent's, i.e.,m=0 and 1,m=1, and 2, and so on, sponds to the proton-centered kink with= 1, the symmetry

because they occur at the lowest energies. Thus, the crosf Which is given by Eqgs(14). Contrary to previous knowl-
ings, when the kink state witm particles on the barrier is edge on the stability properties of the kink solutions for the

. . 4 .
transformed into the state with+ 1 particles on it, occur at  discrete sine-Gordon and™ models, where théantikinks
the following values of«: of symmetry(13) are always dynamically stable, while the

(antikinks of symmetry(14) are always dynamically un-
k9 =(m+1)(m+2)/2a2, m=0,1,... . (19  Stable, an interchange of stability is observed for the proton
potential (6) with finite B’s as « varies. Thus, one can see

Therefore, depending on the strength of the proton-protofat at a certain value of the coupling parameter24.5,
coupling«, the proton-centered or the ion-centered kink carth® energies of both the types of symmetric kinks coincide,
reach a global minimum of the energy,>0 (except for the ~@nd after passing this critical point, the proton-centered kink
ground states, wheE=0). In addition, it is interesting to apPpears to be stable, while th_e ion-centered kink is .unstable.
notice that at the values of given by Egs.(19), the inter- For higherk’s, several more interchanges of stability take

bond and the intrabond energies are exactly equal each oth&ace, with the energy difference between the sequential kink
states which decreases with the growthxofThese transi-

tions of stability take place smoothly all the way up to the
continuum limit. We refer to these transitions sability
Now let us investigate how the properties of the kink switchings Thus, the solutions withm>1, which were
solutions found in the exactly solvable limit—c change clearly separated from th@=0 and them=1 solutions in
when g take finite values. Thus, changing allows us to  the exactly solvable limiB— o, appear to be smoothly con-
explore the whole set of scenarios, starting from ¢fdimit nected with them. In other words, while the couplirgn-
and finishing with the limit3—o. We start to compute the creases, the particles slowly “climb” on the barrier, so that
kink solutions from the anticontinuous limitc& 0), taking  there is no abrupt transition from the state witl=0 to the
the solutions of the exactly solvable limit as an initial guessstate withm=2 or, further, to the states witm=4,6, ... .
for the Newton iteration method. Then, we increas@end  The same can be concluded about the kinks witibeing
check how the kink profiles behave. In Fig. 5, the energyodd. In this respect, the system still shows a similarity to the
dependence on the coupling parameteis plotted for 8 ¢* model.
=10. First, let us focus on the behavior of the solutions with  If we focus more carefully on the behavior of the system
the lowest energieamely, those that correspond rio=0 in the vicinity of the points, where the energies of proton-
andm=1 in the exactly solvable limjt In Fig. 5, curve 1  centered and ion-centered kinks become equal, we find that a
corresponds to the ion-centered kink witi= 0, the symme-  different type of kinks appears. These kinks shown in Fig. 6

B. Numerical results for finite B's
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FIG. 6. Profiles of monotonic asymmetric kinks wijgh=10 and I
x=24. Inversion of these profiles is clearly seen from comparison . L .
of panels(a) and(b). 0 10 20 30 40
K

do not exhibit any of the symmetries defined by E({s3) . .
and (14), but they are doubly degenerate, related to each FIG. 8. Dependence of the displacement of the central particle

other by the inversion with respect to the crossing point befrom equilibrium(atuy,,=0) on the couplings for proton-centered
tween the lineu,=0 and the line connecting two central (curve D, ion-centeredcurves 2 and B and asymmetri¢curve 3

particles of the kinkn=48 andn=49 in Fig. §a)]. The kinks with 8=10. Solid lines show stable kinks and dashed lines

energy of these kink states with broken symmetry is always':’hOW unstable ones.
larger than the energy of the symmetfion-centered and
proton-centeredkinks. The asymmetri¢antikinks are al- the middle of the K/2)th bond, i.e., when theN/2)th proton
ways linearly unstable. In Fig. 5, their energy is shown byis always a central particle of the kink witln,,=0. The
curve 3. displacements of theN/2)th proton for the ion-centered
The kinks of the last type are shown in Fig. 5 by curves 4kinks positioned on theN/2+ 1)th and the K/2)th ions are
and 5. This is what happens to the solutions with-1 ob-  shown by curves 2 and 3, respectively. When increaging
tained in the limit3—c, when we are moving from the the (N/2)th proton moves slowly out of the well. At a certain
anticontinuous limit ¢=0). Instead of attaining a regular value of x, more specifically, aik=22.5, the pitchfork bi-
monotonic form, the kink profiles with several particles onfurcation of the proton-centered kink takes place. This con-
the barrier develop a zigzaglike structure in their centers, afiguration retains its stability and two new solutiofisoth
demonstrated by Fig. 7. For finitg’s the zigzaglike solu- linearly unstableappear. These are precisely those asymmet-
tions are linearly unstable and therefore we do not studyic kinks (see curves 4 and 5 in Fig,),8with their shape
them here in more detail. shown in Fig. 6. At the beginning, they look like slightly
Instead, we focus on the behavior of ttinotonickink  distorted proton-centered kinks, but with the growth gf
solutions with the increase of the couplirgin the vicinity  they change more and more towards the ion-centered con-
of the stability switchings. To understand this effect better, infiguration. Eventually, the second pitchfork bifurcation takes
Fig. 8 we have plotted the position of thi/2)th proton N place at k=26.2. The asymmetric kinks join the ion-
is the total number of H bonds in the chpas a function of  centered kinksjunction of curves 3 and 4, and curves 2 and
the couplingx. Here the sequence of pitchfork bifurcations 5) and the ion-centered configuration loses its stability.
is clearly seen. Curve 1 corresponds to the kink centered in Now one can clearly see that two identical kinks, shifted
by one lattice spacing with respect to each other, are con-
nected via such a bifurcation sequence. Thus, this pitchfork

20'2 bifurcation is nothing but a transition of the kink from one
3 of @ 1 position to another position, one lattice period forward or
02 backwards. This cascade of bifurcations can be continued
. . further up or down inu,’s or, in other words, two or more
%0 “® 5191 » % sites backwards or forward. A similar bifurcation scenario for
discrete breathers in the ac-driven and damped Klein-Gordon
o2r 7 lattice has been reported in Rg29].
== of b) | For higher values of3, the effect of stability switchings
exists, being more pronounced because the switchings start
-02 ; . . at smallerx and take place more frequent(gee Fig. 9.
40 45 5191 55 60 Another feature that appears from the exactly solvable limit
B—x is as follows. Curve 1 of Fig. 9 corresponds to the
FIG. 7. Zigzaglike kink profiles fo3=10 andx=8: (a) ion-  ion-centered kink and curve 2 to the proton-centered kink.
centered andb) proton-centered kinks. They cross each other at=17.4, where the ion-centered
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Il 3 4
27 7 /<N FIG. 10. Kink solutions corresponding to curves @)(and 4
4 4 (+) of Fig. 9 for k=25.
b/ N
By increasingB even more, the coexistence of different
astL 2 o = kinks with the same symmetry is even more pronounced. We
% 20 20 50 80 100 120 have checked the case 8f=50 and discovered for this value
K that several cases of this coexistence for different kinks take

place and they are much more pronounced. Thus, this case is

FIG. 9. Dependence of the kink energy 8= 20 on the cou- rather close to the exactly solvable lingt—o.

pling « (see text for detai)s The solid line shows stable states and

the dashed lines show unstable ones.
C. Analytical approximation for finding kink solutions

kink loses its stability, disappearing shortlyt28.6. Here One can use a simplification of the potenti@l in order

the same pitchfork bifurcation scenario takes place, but th& obtain analytically an exadant)kink solution. To this
distance between the first and the second bifurcations i§nd, we approximate both the wells of the potential by pa-
much larger than in th@=10 case. In the meanwhile, a bit rabolas connected by a constant equal to the barrier height as

earlier, atk=23.4, a new family of ion-centered kinks ap- follows:

pears(curve 4. This curve corresponds to the ion-centered 2 2 _

kinks with two protons on the barrier. Thus, one can observe (0p/2)(u+a)s, »<u=-b

the coexistence of two different kink solutions with the same V(u)={ 1, —b=u=b (20)
type of symmetryfor more details see the upper inset of Fig. (wS/Z)(u— a)?, b<u<o

9). This coexistence takes place on a rather narrow interval

of x and one of the coexisting kinks is unstable, but still this

phenomenon clearly originates from the lingit—co. where b=a—2/w,. A schematic description of this
In Fig. 10, we show the shape of two coexisting kinks.“parabola-constant” approximation is presented in Fig. 11

One of them(more narrow corresponds to curve 1 of Fig. 9 by thick solid lines. The thin solid lines show the original

and the second one, which is more broad, corresponds feotential(6) with 3=20. The approximation is expected to

curve 4 of this figure. These kinks have zero and two protonsvork well, when the barrier is flat enough, i.e., wheg

on the barrier, respectively. Whem increases further, the > \/2/a. Within this approximation, we are able to solve the

stability switchings occur between curves 2 and 4 under th@roblem of finding stationary kink solutions analytically.

same scenario as before 8= 10 (see for details the lower Let m=0,1, ... be thenumber of protons on the barrier
inset of Fig. 9. Zigzaglike kinks are also presented in this of the potential20). Then the discrete kink profiles are given
case, as shown by curves 6-8. by

—a+A M Notm2H) i —o<n<n,—m/2—1
u,={ (N—neg+1/2)Dy, if ng—m/2—1<n<ng+m/2 (21
a—Aye Mn-nomm2) if ng+m/2<n<o

for the kink centered on thieyth ion (m=0,2,...) and

—a+ Ayt oML i —w<n<ny—(m+1)/2
u,=4 (n—ng)Dp, if ng—(m+1)/2<n<ng+(m+1)/2 (22)
a—Ape MNTnom(MED2L it not(m+1)/2<n<o
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within our approximation one can predict the effect of
switching of the stable and unstable kink configurations. In
Table I, we show the values of the coupling parametefor
which the first[i.e., whenxk=«k; and m=0; see also Eq.
(19)] switching of the kink stability takes place.

We see that the approximation works fairly well whgn
is rather large and the barrier between the wells is close to
being completely flat. It improvres with the increase &f
and in the limitB— o, our approximation coincides with the
exact result, shown above. Thus, the switching of the stabil-

ity of kink states with different symmetries is a generic effect
that does not depend on a specific model, but on the proper-
ties of the on-site potential. Another piecewise approxima-
tion of the proton potentiaV/(u) for a HB chain has been
constructed earlier by Weiner and AsK&0], using alterna-
atlively inversed parabolas. Our potential approximatig2f)
seems to be more appropriate for the detailed studies of flat-
ness effects of the on-siténtrabond potential and more
close to the realistic double-Morse potentidl if 8 is not so
small.

Note that the zigzaglike kink profiles obtained above, nu-
merically shown, e.g., in Fig. 7, can also be given analyti-
cally within the approximatiori20). Indeed, the ion-centered
kink shown in Fig. Ta) is described by

V(u)

FIG. 11. Schematic representation of the approximate potenti
(20).

for the kink solution centered on thegth H bond (M
=1,3,...).Here\ is a “localization” parameter that mea-
sures the transition width in th@ntjkink profile between
the uniform distribution of protons on the barrier and the
(antpkink asymptotical,— *a. It is given by a positive root
of the equation

coshh = 1+ w2/2x. (23 —a+Bye""?), n=-2-3,...
. . ={ Up=—U_1=
The other two parameters, the amplitutl@nd the uniform Un 0 ﬂl(nj‘; (27)
distance between the nearest-neighbor protons on the flat a—Bee , N=12,...,
barrier,D, can be expressed through the localization param-
eter\ as whereas the proton-centered profile illustrated by Fib) &
given by
B 2a
™ (m+1)et—m+1’ —a+B; M2, n=-2-3,...
2ae u,= Uo=0, Up=—U_1=¢§; (28
D (24) a—B;e M  n=12 ..,

™ (m+1)et-m+1°
As follows from Egs.(10) and (23), the limit A (when Where\ is given by Eq.(23) and
wS/KHOC) is more general than the limg—o becausex
contains bothB and . Therefore one can check that Egs. ette M -m2-1
(21)—(24) are reduced to the stationary kink solution given Bn=2a eMer—m+1)
by Egs.(15) and(16) as\ —o. In particular, the amplitude
A, and the distance between the protons on the babrjer
tend to zero and & (m+ 1), respectively.

Using Egs.(21)—(24) one can easily compute the energy
of both the kink configurations:

3—et—2e*
§m=am, m=0,1. (29)

TABLE |. Comparison of numerically and analytically calcu-

Em=m+2/<a2 tanf(r/2) _ (25) lated values ofx for which the first fn=0) stability switching
1+ mtanh(A/2) occurs.
Similarly, this expression is also transformed to the energy B k1, numerical k1, analytical
(18) as\—co.
Now we investigate the behavior of the energy difference 5 64.10 18.0
10 24.547 17.069
AEn:1(xk,8)=Ens1—Em, m=0,1,... . (26 20 17.383 16.329
50 16.172 16.052
We find that this difference as a function efhas a number © 16.0 16.0

of zeros, and these zeros depend on the parangetéhus,

066603-8



DISCRETE KINK DYNAMICS IN HYDROGEN-BONDED . . . PHYSICAL REVIEW E56, 066603 (2002

Using the last equations, the kink energy can be calculated in
a similar way as the energfl8). In the limit A —«, the
energies of the zigzaglike kinks, the profiles of which are
illustrated by Fig. 7, become

E,=6«a? and E;=1+5«a?. (30)

These expressions clearly show that for these type of kinks,
their energies can also coincide for certain values of coupling
« if B (and, consequently) is large enough.

D. Elementary excitations on the kink background
Let u!” be a stationary kink solution of Eq11), i.e., a o ® o o
fixed point of the mag12). We are interested in the proper- . T o P
ties of small-amplitude excitations on the kink background. 0 20 40, 60 8 0 50, 10
Linearizing Eq.(9) around the stationary kink solution ac-

FIG. 12. Dependence of the system eigenfrequerieigen the

cording to ) :
coupling parametek for =5, (a) ion-centered andb) proton-
un=ug0)+AnemT, (32 centered kinks; and fog=10, (c) ion-centered andd) proton-
centered kinks. Curves depicted by small dots correspond to cases
we arrive at the eigenvalue problem where()’s are purely imaginary and therefore Ifh's are plotted

instead(see text for details

CLA=AA, A={... A, 1. A Apq,...5 (32
{ oLt I tinuum ¢* model, there are only two localized modes: the

Here the operatdk [the Hessian of the Hamiltonian E@s)] ~ Goldstone mode and the Rice mode. The properties of the
acts on a vectoA as internal modes can be significantly altered due to different
factors such as change of the nature of the interparticle in-
(|A-A)n= — k(Ans1—2A0+An_1) + VoA, (33 teraction[31] or change of the shape of the on-site potential
[32]. If B is not so large, the behavior of the eigenfrequen-
WhereVn=V”[u§1°)]. The operaton: is a symmetrigso all cies and eigenvectz)l(see Fig. 1B of our.system is reminis-
eigenvalues are realridiagonal matrix and the spectral pa- C€Nt to that of thep™ model, as shown in panels) and (b)
rameter is\ = Q2. This eigenvalue problem can be treated aof Fig. 12. However,. severgl differences occur. Thus, the
a quantum-mechanical problem of a particle, trapped in oldstone mod_e collides with t_he zero axis and becomes
single-well spatially discrete potential formed by the kink. Its Unstable[see Fig. 12a)] for the ion-centered kink. Mean-
depth depends on the curvature or flathess of the proton pef‘fh”e’ for the proton-centered kinksee Fig. 1%)], the
tential in the middle of the H bond/”(0), andtends tOwS

1
asn— +oo, 0
. . . . o 05
The eigenvalues of the problem also give information < <&
about the linear stability of the kink solution. If there exists 0 °
at least one eigenvalué =0?<0, the linear excitation on o0 @ 05 @
the kink grows exponentially in time and the corresponding T T e % =
kink solution is linearly unstable. Otherwise, it is linearly ] n 0s n
stable. The stability of stationary kink solutions is deter- “
. . 0.5 = 0
mined by the system parameténs our case, by the curva- <&
ture or flatness paramet@rand the coupling). ° 05
In Fig. 12, we depict the dependence of the eigenfrequen- % ®) ©
ciesQ,’s on the coupling parameter for different curva- o T 5 8o o Hm s = 60
tures 8. The spectrum consists of two parts. The first one n n
describes the eigenfrequencies that lie above the pot&fiial f:
and therefore determine delocalized eigenvectors corre- <:‘10
sponding to the lineafphonon spectrum of the lattice. The s ©
second part consists of eigenfrequencies that lie belxﬁw o
corresponding to spatially localized eigenvectors. The lowest w0 45 50 55 80

eigenfrequency is the Goldstone mode, which is universally n

presented in all the Klein-Gordon models. In the continuum  FiG. 13. Example of eigenvectors for the case with 10 and
models this frequency is exactly zero. In the corresponding.=10. For the ion-centered kinka) the eigenvector of the lowest
discrete models, its value tends to zerocas. The second |ocalized mode an¢b) the eigenvector of the first excited localized
mode corresponds to small-amplitude oscillations of the kinknode. For the proton-centered kink: the eigenvectorgcpfthe
core, often being referred to as the Rice mode. In the conlowest,(d) the first, and(e) the second localized modes.
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FIG. 14. Example of eigenvectors f@=10 and«=30: (a)—

(d), eigenvectors of the localized modes for the ion-centered kink
from the lowest to the highest modég)—(g), the same for the

proton-centered kink.

Another difference is the appearance of the new eigenfre-

FIG. 15. Peierls-Nabarro potentialf@#=10 and(a) k=70.5,
(b) k=71.22,(c) k=71.288,(d) k=71.35, ande) k=72.

o I, known as a Peierls-Nabar(BN) potential. The PN poten-
Goldstone mode was initially unstable and became stablgg| £, (n,) is a function of the kink center position

later on. The stability switchings are caused by the pitchfork
bifurcations as described at the beginning of this section.

qguency for the proton-centered kink with the eigenvector that
has two node$see Fig. 18)].
Thus, one can see that curvatures play an important rolgng the height of the PN barrier equals
in the properties of the eigenfrequencies of our system. In-
creasingg further, we observe more pitchfork bifurcations of
the Goldstone mode and the appearance of more localized

modes. In panel&) and(d), we show how the eigenfrequen-

ne=2, n

Un+1—Unp-1 :i
2(Uu,—u_,) 4a

oE= E(nc,max) - E(nc,min)-

E n(un+1_ un—l),

(34)

(35

This difference measures the activation energy for the

cies behave foB=10. We qb_ser\_/e more Io<_:a|ized i_nt_ernal kink propagation through one lattice spacing. Heg,ay
modes, some of them surviving in the continuum limit andandn, ,,;, are the positions of the kink, where the PN poten-
some of them disappearing there. In addition, we note a simiial has its maxima or minima, respectively. The minimum

lar influence of the long-range parameterof the interpar-
ticle interaction in the sine-Gordon mod@&1] on the corre-
sponding linear spectrum, if the strength of this interacion an integer or a half-integer.
is not so large, i.eJ<1/2. More precisely, as demonstrated
by Fig. 8 of Ref[31], with the decrease af, the number of

internal localized modes increases.

The shape of the corresponding eigenvectses Fig. 13

position n¢ i coincides with the kink position, which is a
global minimum of the kink energy. Thus, normafly i, is

It is a well-established fact that for theé* and sine-
Gordon models, the height of the PN barrier coincides with

the difference between the energies of the proton-centered

and ion-centered kinks. As demonstrated above, the deforma-

behaves according to the wave-function shape of the boungbn of the proton(intrabond potential V(u) leads to the

states of the quantum-mechanical Schinger equation.

switching of stability of these two states. This does not mean,

Here and in Ref[31], we also observe the close similarity however, that the PN barrier disappears, when the energy of

between the eigenvector’s shafoé. Fig. 9 of this reference

and Fig. 14 of the present work

IV. PROPERTIES OF THE PEIERLS-NABARRO BARRIER

In general, the propagation of topological solitqkiks

these states coincides because the site-centered and proton-

centered states do not represent the states with the highest
and the lowest energy of the PN potentiaV,18,32.

In Fig. 15, some examples of variation of the energy

Epn(ne) for different values ofx are presented. Panéd)

corresponds to the situation when the proton-centered kink is

and antikinkgin lattices are subject to their discreteness. Thean energy minimum and the ion-centered one reaches a
discreteness effects can be described by a spatially periodinaximum. The second pan@) demonstrates the case when
potential, with the period coinciding with the lattice spacing the first pitchfork bifurcation occurs and the asymmetric kink
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ﬁ FIG. 17. Normalized velocity of the nonoscillating kink motion

FIG. 16. Dependence of the height of the PN barrier on theagainst the coupling parameterfor 8= 10.
paramete for k=30. The upper inset shows the shape of the PN
barrier before the minimum g=7.8 (curve 1) and after the mini-  several models. This effect is due to the properties of the
mum at 3=8.8 (curve 2. The lower inset shows more detailed on-site (intrabond potential V(u) and, more precisely, the
behavior of 6E around its minimum. flatness of its barrier which, in its turn, causes the stability

switchings described in the previous sections.

appears. Pangt) corresponds to the case when the stability ~For finding nonoscillating kink solutions, we have used a
switching happens and both the proton- and ion-centeregseudospectral methd®3]. The method allows us to find
kink states get minima, and the asymmetric kinks arethe traveling-wave kink solutions of the type
maxima. The period of the PN potential is decreased by one-
half. After that, as shown in panétl), the proton-centered Un(t)=u(n—s7)=u(z), (36)
kink becomes unstable and the ion-centered one stable. The
last panel(e) is obtained after the second pitchfork bifurca- solving the differential equation with advanced and delay
tion has occurred and the asymmetric kinks disappear. terms:

Dependence of the PN barrier is nonmonotonic not only ,
in « but also inB. In Fig. 16, we show the dependence of the S U (2)=«[u(z+1)—2u(z)+u(z—1)]=V'[u(2)].
PN barrier on the parametgr for a fixed value ofx. We (37

observe a minimum g§=8.3, which is obviously caused by The gependence of the kink velocity on the coupling param-
the stability switching. Indeed, as shown by the upper insetgter , js shown in Fig. 17. As follows from this figure, it
the minimum of the PN potential moves from a half-integerg, s (see curve LLat the value ofc, which is close to that
value to an integer one. Thus, the stable kink configurationy han the pitchfork bifurcation takes plateee Fig. 8 Then
changes from the ion-centered to the proton-centered kinl&he velocity grows withc. The second velocity dependence

Note, that the height of the PN barrier does not attain Z81%tarts atx, being close to the point of the second pitchfork
(see the lower insgtbut decreases by two orders of magni- bifurcation.

tude. Dependence of the kink velocity on the paramegenas
similar behavior, as demonstrated by Fig. 18. It is interesting
V. DISCRETE KINK MOBILITY to note that the value of the velocity of the moving kink does

Another interesting consequence of the deformation of the ot decrease down to zero asor § decreases, but stops at

on-site potential barrier is the possibility of the existence of
nonoscillating traveling kinks. In the continuum Kilein-

Gordon models which admit moving topological solitons 0.6
(kinks and antikinks the domain of admissible soliton ve-

locitiessis the interval B<s<c,, wherec,= \/x is the char- &’
acteristic velocity. Thus, kinks in these continuum models o 04

are a one-parametric family of solutions with the kink veloc-
ity s as a parameter. In a general case of the discrete Klein-
Gordon model, this family is reduced to discrete set of 0.2;
traveling kink solutions with some velocities,, sq, .. .,
Sk, So=0, 5,<Cg. In the ¢* and the sine-Gordon models,

there exists onlyg,. In general, everywhere in betwesyis, 00 5 B 10 15
there exist moving kinks witlescillating asymptotics known
as nanopteronsThe existence of velocities,#0 has been FIG. 18. Normalized velocity of the nonoscillating kink motion

shown both numericallyf18] and analytically[20,21] for  against parametgs for «=120.
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FIG. 19. Examples of moving antikinks @=10 and«=100 -1
with velocities(a) s=6.227 and(b) s=2.463. Circles show posi-
tions of lattice sites.

(c}

some finites instead. This means that the kinks should have
sufficient kinetic energy to overcome the pinning effects.

In Fig. 19, we plot the profilesi(z) of the moving kinks
that correspond to both the curves of Fig. 17. The profile in
panel (a) corresponds to the moving kink from curve 1, T — o 5 10 15
whereas the profile in panéb) corresponds to the kink from z
curve 2. In both the cases, the coupling Cons_tant was t_he FIG. 20. Examples of moving antikinks at=120: (a) 8= 12
same:x=100. The second kink appears to be wider and thisng s=4.154, (b) 8=15 ands=4.551, (c) 8=20 ands=4.734.
can be explained by the fact that its velocity is more than twegircies show positions of lattice sites.
times smaller. The insets of the figures show the velocity
profiles. the potential for proton transfers in the hydrogen bond.

In Fig. 20, we investigate the behavior of moving kinks Therefore throughout this paper we call it an intrabond pro-
for different 8's. The increase in the barrier flatness is re-ton potential. A Morse-type function was found to offer the
flected in the change of the shape at the kink center. We haugest combination of accuracy in reproducing gquantum-
considered the kinks corresponding to curve 2 of Fig. 18 mechanically computed potential24,25. The model has
when the coupling is fixedk=120. The deformation of the two parameters, the proton-proton coupliagnd the anhar-
kink profile can easily be seen in the velocity profile shownmonicity of the Morse potential, the curvature parameter
in the inset. The kink profile experiences the deformation ofThe anharmonicity parameter is responsible for the shape of
its slope part, which is seen as a dip in the velocity profilethe intrabond potentia¥(u), especially on the convexity of
The dip grows with increasing. More flat the barrier be- its barrier. For large, the barrier becomes more flat and
comes, more the possibilities of the deformation of the kink'sthe wells become more narrow. Changing this parameter, one
profile. can explore the variety of possible intrabond potentials, start-

These results demonstrate that the existence of a finite setg from the ¢* model (as 8—0) and finishing with the
of velocities at which the kink can move with a constantexactly solvable limit3— oo,
shape is a generic effect. Its appearance is due to the shape of The deformation of the barrier of the intrabond potential
the on-site(intrabond protoj potential. If the proton poten- becomes crucial for the properties of the stationary kink so-
tial has a barrier which is flat enough to allow the symmetrylutions. While the¢* limit allows us onlytwo types of sta-
switchings(accompanied by the pitchfork bifurcationshe  tionary kinks: ion-centered and proton-centered with their
Peierls-Nabarro barrier experiences lowering for specific valstability properties being constant for any couplirg the
ues of the system parameters. Thus, it becomes possible thgsposite limit shows the existence of an infinite countable set
the kinetic energy of the kink is sufficient to overcome theof stationary kink solutions. For some values of the coupling
pinning forces of the lattice. x forming an infinite countable set, the states with different
symmetries can have the same energy. In between these two
limiting cases, some of the kink properties survive from the
exactly solvable limit3— . First of all, the stability prop-

We have studied the dynamics of the one-dimensionagrties of the kink solutions depend drastically on the cou-
Klein-Gordon lattice with the on-site potential of the double- pling parametek. With the increase ok, the initially stable
Morse type. This is a physically motivated model, which ision-centered kink becomes unstable, while the proton-
the simplest one for the proton transport in a hydrogencentered kink gets stable. With further increasexpfthese
bonded chain, where the on-site potential plays the role oftability switchingswhich are, in fact, pitchfork bifurcations,

VI. CONCLUSIONS
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occur several times. Another result can be seen for rather Thus, we have concluded that highly mobile kinks are
high B, at least for3>20 in our calculations. It is the coex- possible in our model of the proton transport in hydrogen-
istence of several kink solutions of the same symmetry folbonded chains, even for those proton-proton nearest-
the samex. This is a leftover from the exactly solvable limit neighbor interactions where the proton kinks are very nar-
and it disappears with lowering. An analytical approxima- row. This gives us a reason to believe that the soliton
tion has been constructed to show the effect of the symmetrhechanism of proton transfers can work for physically rea-
switc_:hings analytic_ally and to confirm thafc the effect is notgpnable values of the proton-proton couplirg Finally, it
confined to a specific model but has a universal nature.  should be mentioned here that our study is concerned with
The stability switchings contribute to the nonmonotonic e pifyrcation scenario fastatic anddiscretekink solutions
behavior of the Peierls-Nabart®N) barrier. The barrier de- in the nonlinear Klein-Gordon family, whereas the bifurca-

cays with the Increase Of h_owevgr, It experiences local tion theory ofstationarytraveling-wave solutions in the con-
minima at the stability swnchlng points, where its value de- inuum limit for this family was previously developed by
creases by one order of magnitude. The same happens for t @ittiker and Thomag34,35

dependence of the PN barrier gn This phenomenon, in its
turn, assists the kink mobility and leads to the appearance of
a finite set of velocities for which the propagation of very
narrow kinks is possible. This is a generic effect, attributed
to the shape of the on-sitentrabond potential, and also is
not confined to a specific model. Note that the PN barrier is This work has benefited from discussions with M. Pey-
not required to vanish completelgee Ref[21]). Simply, the  rard. We acknowledge financial support from the European
barrier is low enough for the kinetic energy of the kink to Union under LOCNET Project No. HPRN-1999-00163 and
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