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Discrete kink dynamics in hydrogen-bonded chains: The one-component model
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We study topological solitary waves~kinks and antikinks! in a nonlinear one-dimensional Klein-Gordon
chain with the on-site potential of a double-Morse type. This chain is used to describe the collective proton
dynamics in quasi-one-dimensional networks of hydrogen bonds, where the on-site potential plays the role of
the proton potential in the hydrogen bond. The system supports a rich variety of stationary kink solutions with
different symmetry properties. We study the stability and bifurcation structure of all these stationary kink
states. An exactly solvable model with a piecewise ‘‘parabola-constant’’ approximation of the double-Morse
potential is suggested and studied analytically. The dependence of the Peierls-Nabarro potential on the system
parameters is studied. Discrete traveling-wave solutions of a narrow permanent profile are shown to exist,
depending on the anharmonicity of the Morse potential and the cooperativity of the hydrogen bond~the
coupling constant of the interaction between nearest-neighbor protons!.
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I. INTRODUCTION

Hydrogen bonds~H bonds! play a crucial role in the struc
ture and the dynamics in a whole variety of systems rang
from ferroelectrics to biomolecules. They are of central i
portance in biology, when reactions are considered at
lecular level. In bioenergetics, they appear even more cru
because they enable transfers of protons from one mole
to another one in networks or chains formed via hydrog
bonding@1#.

More specifically, H bonds@2# are interactions linking two
molecules or ions, for example, O, N, F, and Cl atoms, o
general any pair of hydroxyl groups, which may be deno
by X, via a hydrogen ion~proton! H1, forming a hydrogen-
bonded~HB! bridge X-H•••X as shown schematically in
Fig. 1. The ion to which the proton in this bridge~H bond! is
more tightly linked is called the hydrogen donor, whereas
other ion is the hydrogen acceptor. More precisely, the p
ton is coupled to eachX2 ion through a pair ion-proton
interaction potential of the standard type~Morse, Lennard-
Jones, etc.! with an equilibrium distancer 0 , which necessar-
ily has a finite dissociation energy as theX•••H distance
tends to infinity.

As usual, the total potential for the HB proton is of
double-well shape, but this can occur only if the motion
the heavy ions along the H bond is appropriately constrain
so that either~i! a sufficiently strong interaction~repulsion!
between theX2 ions that does not allow the ions to g
closer to each other than by a distance less than or equ
2r 0 or ~ii ! a periodic substrate potential with period excee
ing 2r 0 is additionally involved. In this way, a one
dimensional network of hydrogen bonds can be formed a
diatomic chain of alternating heavy~ion! and light ~proton!
particles coupled nonlinearly~e.g., via a Morse-type poten
tial, as in Ref.@3#!, whereas the second-neighbor~ion-ion
and proton-proton! interactions are involved in the harmon
approximation. Under certain conditions on the ion-ion co
pling discussed in Ref.@4#, the proton in each H bond o
the HB chain can be found in two equilibrium position
1063-651X/2002/66~6!/066603~13!/$20.00 66 0666
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separated by a potential barrier, so that the two degene
ground states of the chain•••X–H•••X–H•••X–H•••
and•••H–X•••H–X•••H–X••• are assumed to exist. An
other important property, more specific for biological sy
tems, is that the height of the potential barrier crucially d
pends on the distance between adjacentX2 ions. Using these
properties as the main features of HB chains, a numbe
one-dimensionaltwo-sublatticemodels, whose dynamic be
havior is governed by thesoliton theory @4#, have been sug-
gested and studied extensively. These solitonlike theories
based on the well-knowncooperativity of the hydrogen
bonding, simply defined through the coupling of protons
the nearest-neighbor hydrogen bridges of the chain.

Since the HB chain is a diatomic lattice, the mechani
of hydrogen bonding involves two types of particle displac
ments. LetQn be the displacement of thenth heavy ion from
equilibrium andqn be the displacement of the proton fro
the middle of thenth unit cell, when the adjacent ions ar
found in equilibrium~i.e., Qn5Qn11[0). These displace-
ments are labeled according to the seque
$ . . . ,Qn21 ,qn21 ,Qn ,qn ,Qn11 ,qn11 , . . . %. Then the gen-
eral and the most simple model for the proton transfers
such a diatomic chain can be given through the tw
sublattice Hamiltonian, consisting of two parts@4#:

H5H01Hion . ~1!

FIG. 1. Schematics of interactions in the hydrogen bond.
©2002 The American Physical Society03-1
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The first part

H05(
n

Fmp

2
q̇n

21
Kp

2
~qn112qn!21«0V~un ,rn!G , ~2!

with

un5qn2 1
2 ~Qn1Qn11! and rn5Qn112Qn , ~3!

describes the proton kinetic energy, the nearest-neigh
proton-proton interaction, and the intrabond proton ene
that depends on the displacements of the protons from
midpoints in the H bonds,un’s, and the relative distance
between the nearest-neighbor, ionsrn’s, whereas the secon
~pure heavy-ion! part

Hion5(
n

F1

2
MQ̇n

21
1

2
Kionrn

21
1

2
KsubQn

2G ~4!

describes the kinetic energy of theX2 ions, the coupling
energy between the nearest-neighbor ions, and the intera
energy of theX2 ions with a possible substrate~e.g., formed
by the walls of a pore crossing a membrane!. Here the over-
dot denotes differentiation on timet. The proton and ion
masses are denoted bymp and M, respectively. Similarly,
Kp , Kion , andKsub stand for the stiffness constants of th
interaction between the nearest-neighbor protons,
nearest-neighbor ions, and the chain ions with the subst
respectively. It is important that the intrabond proton ene
is given in terms of a general double-well potentialV(u,r)
as a function of two variables:u, the proton displacemen
from the middle of the hydrogen bond, andr, the relative
ion displacement. If additionally this~dimensionless! func-
tion is normalized according to the relationsV(0,0)51 and
V(6a,0)50, where6a are the positions of the minima i
this function, then«0 is the barrier height of the proton po
tential in the H bond. When the heavy ions are displac
from their equilibria, this potential is deformed, with its ba
rier top moved together with the ions.

There have been numerous studies@4# of soliton solutions
to the equations of motion governed by the Hamiltonian~1!–
~4! including also one-component models, where the he
ions X2 are assumed to be fixed@5–11#. All these studies
refer to the continuum limit, which presumes the existence
a sufficiently effective cooperativity of hydrogen bonding o
in other words, the interbond proton-proton couplingKp is
required to be strong enough. However, according to theab
initio calculations of the proton-proton interaction in realis
HB chains by Godzik@12#, Kp.41 kcal/mol Å2. This mag-
nitude appears not to be sufficient for afree propagation of
the ionic defects along the HB chain with realistic values
the potential barrier height«0 . The reduction of this barrie
on the basis of the two-component model was also show
be not enough to provide a free soliton regime, and the io
defects in HB chains with realistic parameter values@13#
were shown to be very narrow objects@14#.

On the other hand, a rapidly increasing number of pu
cations over recent years~since the pioneering work of Pey
rard and Kruskal@15#! have demonstrated significant diffe
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ences in the behavior of soliton solutions treated in
continuum limit and their spatially discrete relatives@16#.
The discrete versions of the partial differential equatio
brings about a number of critically important modificatio
to the dynamics. The moving kinks of the continuum theor
become propagating structures that decelerate by emi
radiation as they traverse the lattice sites. This ultimat
brakes the structures and brings them to rest, or ‘‘pins’’ the

The above results has been obtained for the conventi
models such as the discrete sine-Gordon andf4 chains. For
a more general class of models, some interesting and intr
ing results have been obtained. Thus, it has been shown
the shapeof the on-site~in our case, the intrabond proto
energy! potential is a factor of particular importance fo
modeling soliton motion in physical systems. To study th
effect, Peyrard and Remoissenet@17# have introduced a
modified sine-Gordon system, where the shape of the on
potential differs sufficiently from the sine function. The
found that if the barrier between the potential wells is fl
enough, the Peirels-Nabarro~PN! barrier does not decreas
monotonically with the coupling constant, as in the ordina
discrete sine-Gordon chain. It decreases with oscillations
that the PN barrier experiences dips, where it get lowered
an order of magnitude. Later@18#, it was found that if the PN
barrier decreases nonmonotonically, there exist certain
locities, at which even very discrete kinks propagate w
constant shape and velocity. Everywhere in between th
velocities, there exist kinks with oscillatory asymptoti
~nanopterons!. Approaching the problem from another sid
Schmidt in Ref.@20# has constructed a Klein-Gordon mod
that allows an exact moving kink solution of the for
tanh(n2vt) for some specific value of velocityv. Further-
more, Flach and co-authors@21# have shown that for this
model the PN barrier is nonzero~when vÞ0). It was also
shown that kinks of the discrete sine-Gordon equation w
topological charges greater than 1 exhibit some featu
similar to those, described above, including free propaga
at some selected velocities~see Refs.@15,18,19#!. Note that
if we step out from the Klein-Gordon class of discrete mo
els ~for instance, by introducing anharmonicity into the i
terparticle interaction!, some new phenomena related to t
kink mobility can appear, but this is out of the scope of t
present paper. In this context, a few papers~see Refs.@22,23#
and references therein! should also be mentioned.

Thus, owing to the importance of discreteness effects
the kink dynamics, it would be of great interest to app
these findings first for the one-component model of pro
transport in HB chains and then for the two-compone
model given by the Hamiltonian~1!–~4!. In this context, as
found by Duan and Scheiner@24,25#, a pair of Morse func-
tions, placed tail-to-tail so as to allow for the approach of t
proton towards the acceptor while it is departing from t
donor ~see Fig. 1!, provides the best framework for repro
ducing their potentials obtained fromab initio calculations. It
is important that the Morse-type functions contain para
eters with clear physical meaning, which vary little from o
H bond to the next one in HB systems.

The aim of this paper is to investigate the properties of
one-dimensional Klein-Gordon chain with the on-site~intra-
3-2
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DISCRETE KINK DYNAMICS IN HYDROGEN-BONDED . . . PHYSICAL REVIEW E66, 066603 ~2002!
bond! potential of the double-Morse type. We are going
find both stationary and dynamic~moving! kink solutions
and show that kinks can be mobile even if they are v
narrow.

The paper is organized as follows. In the following se
tion, we present the Hamiltonian and the equations of mo
for the one-component model. In Sec. III, we study the pr
erties of the stationary kink solutions. In Sec. IV, the Peie
Nabarro potential for the kinks is investigated. Section V
devoted to the studies of kink mobility. Conclusions a
given in Sec. VI.

II. THE DOUBLE-MORSE PROTON POTENTIAL

In the limit where the heavy ions are fixed~immobile! at
a same distancel forming a uniform lattice, we deal only
with the first part of the Hamiltonian~2!, whereqn5un . In
what follows we adopt the dimensionless description, wh
for the dimensionless proton displacementun / l we keep the
same notationun and use the time unitt05 l /A«0 /mp. In
these dimensionless variables, the Hamiltonian~2! reads

H5(
n

F1

2
u̇n

21
k

2
~un112un!21V~un!G . ~5!

Here and in what follows, the overdot denotes the differ
tiation with respect tot5t/t0 , andk5Kpl 2/«0 is the dimen-
sionless proton-proton coupling constant.

As described in Introduction and illustrated by Fig. 1, t
intrabond proton potentialV(u) can be formed as a result o
the superposition of two pair ion-proton interaction pote
tials placed tail-to-tail. According to theab initio studies of
Duan and Scheiner@24,25#, these potentials are preferred
be of the Morse type. As a result, the potentialV(u) is a
symmetric double-well function with minima atu56a and
a maximum atu50 @4,26,27#:

V~u!5Fa2cosh~bu!

a21 G2

, a5cosh~ba!. ~6!

The inequalitya.1 ensures the double-well form of th
function ~6!. Throughout the paper we takea50.25. The
potential~6! is normalized so that the barrier height alwa
equals unity. Its shape for different values ofb is shown in
Fig. 2. As can be seen from this figure, the parameteb
determines the curvature or flatness of the barrier and
shape strongly depends on this parameter. We assum
values to range over the whole half axis 0,b,`. For small
b, the barrier is rather narrow, being the limiting case of
f4 model, i.e.,

lim
b→0

V~u!5~12u2/a2!2. ~7!

Increasingb makes the barrier more flat and the wells mo
narrow, so that the other limit is
06660
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b→`

V~u!55
`, 2`,u,2a

0, u56a

1, 2a,u,a

`, a,u,`.

~8!

The corresponding equation of motion is the well-know
discrete nonlinear Klein-Gordon equation:

ün5k~un1122un1un21!2V8~un!, n50,61, . . . .
~9!

Here and in what follows, the prime denotes differentiati
of a function with respect to its argument.

Before embarking on a complete analysis of the discr
equation ~9!, we calculate the dispersion law of sma
amplitude waves around one of the two ground states. A
result, this law is given by the following equation:

v2~q!5v0
212k~12cosq!,

v05A2
a11

a21
b5

A2b

tanh~ba/2!
. ~10!

The gap of the spectrum depends on the parameterb; for
large values ofb, it increases linearly withb.

III. KINK STATES, THEIR STABILITY,
AND BIFURCATIONS

In this section, we start from the classification of possib
stationary~anti!kink states. To compute these states, we h
used both the conjugate gradients method for minimizat
of the stationary part (u̇n[0) in the Hamiltonian~5! and the
Newton iteration method for solving the time independe
nonlinear set of equations that originate from Eqs.~9!:

k~un1122un1un21!5V8~un!, n50,61, . . . .
~11!

These equations can be rewritten as a two-dimensional m

pn115un ,

FIG. 2. The shape of the intrabond potentialV(u) given by Eq.
~6! with a50.25 for b55 ~curve 1!, b520 ~curve 2!, andb550
~curve 3!.
3-3



si
n
n
in

at
t

ec

o
c

a

s

de
es

po

ie
h
f
k

-
s of
try
e

er,

is

n
of
r-

r

u-
be

mil-

KARPAN et al. PHYSICAL REVIEW E 66, 066603 ~2002!
un115k21V8~un!12un2pn , n50,1, . . . . ~12!

In general, maps of this type are chaotic. However, an on-
potential, for which the map~12! is integrable, has bee
found in Ref.@28#. Previous knowledge on kink solutions i
the most popular cases of the discrete nonlinear Kle
Gordon lattices such as the sine-Gordon orf4 chains implies
the existence of only two stationary kink states. These st
possess inversion symmetry with respect to the center of
kink, being monotonic functions on the lattice. They conn
two hyperbolic fixed points of the map, (2a,2a) and
(a,a), which are the ground states of the chain.

Adapted to our case of a HB chain with the numbering
ions and protons according to the sequen
$ . . . ,Qn21 ,qn21 ,Qn ,qn ,Qn11 ,qn11 , . . . %, one of these
stationary states, which has its center positioned at a he
ion @call it an ion-centered kink~antikink!#, say with a num-
ber n0 , is dynamicallystable, whereas the other, with it
center positioned in the middle of ann0th H bond, i.e., in
between then0th and the (n011)th ions@call it a bond- or
proton-centered kink~antikink!#, is dynamically unstable.
The symmetry of the ion-centered~on then0th ion, in be-
tween H bondsn021 andn0) kink ~antikink! is defined by
the relations

un02n52un01n21 , n50,61, . . . , ~13!

whereas for the proton-centered~in the middle of then0th H
bond, in between ionsn0 andn011) kink/antikink, the sym-
metry relation is given by

un02n52un01n , n50,61, . . . . ~14!

The solutions of these types certainly exist also in our mo
as illustrated by Fig. 3. However, their stability properti
appear to be much more complicated and are discussed
low.

In general, a deformation of the barrier shape in the
tential V(u) leads to a more rich family of kink~antikink!
solutions. This has been observed in previous stud
@17,18#. The first feature caused by the deformation of t
proton potential~6! with increasingb is the phenomenon o
stability switching, according to which the two types of kin

FIG. 3. Profiles of monotonic symmetric kinks withb55 and
k530: ~a! ion-centered kink and~b! proton-centered kink.
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solutions with inversion symmetry defined by Eqs.~13! and
~14! switch their stability, while varying the system param
eters. The second one is the appearance of different type
kink solutions. For the first of these types, the symme
relations~13! and ~14! are not valid anymore, whereas th
other one is symmetric with a zigzaglike profile at it cent
but still has monotonic asymptotics asunu→`.

A. An exactly solvable limit

To understand better the effect of stability switching, it
instructive to consider the limitb→`, resulting in a poten-
tial behavior similar to what is studied in Ref.@18#. In this
limit, the double-Morse potential takes the form of Eq.~8!,
for which the system of equations of motion~11! becomes
exactly solvable because the particles~protons! can appear
only either in the wells or in the flat region of the proto
potentialV(u). There exists an infinite, but a countable set
stationary kink solutions with an arbitrary number of pa
ticles, m50,1, . . . , lying on the barrier. This numbe
uniquely defines a kink~antikink! solution. The set of these
solutions can be written as

un55
2a, 2`,n<n02

m

2
21

2a
n2n011/2

m11
, n02

m

2
21,n,n01

m

2

a, n01
m

2
<n,`

~15!

for the kink centered on then0th ion (m50,2, . . . ) and

un55
2a, 2`,n<n02

m11

2

2a
n2n0

m11
, n02

m11

2
,n,n01

m11

2

a, n01
m11

2
<n,`,

~16!

for the kink centered on then0th H bond (m51,3, . . . ).
Similarly, the analytical expressions for the antikink sol
tions can be obtained. These stationary solutions can
found using either energy arguments based on the Ha
tonian ~5! or directly from the equations of motion~11!,
where

lim
b→`

V8~u!5H 2`, 2`,u,2a

0, 2a<u<a

`, a,u,`.

~17!

The energy of both these~anti!kink solutions in the limit
b→` is easily calculated and for any integerm50,1, . . . , it
reads

Em5Em~k!5m12ka2/~m11!. ~18!
3-4
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As illustrated by Fig. 4, where the linear dependences of
energyEm on k are plotted for differentm’s that the cross-
ings of these dependencies occur at some values of the
pling parameterk. The most interesting points in Fig. 4 a
the crossings for the states with the energies that corresp
to adjacentm’s, i.e., m50 and 1,m51, and 2, and so on
because they occur at the lowest energies. Thus, the c
ings, when the kink state withm particles on the barrier is
transformed into the state withm11 particles on it, occur a
the following values ofk:

km11
(c) 5~m11!~m12!/2a2, m50,1, . . . . ~19!

Therefore, depending on the strength of the proton-pro
couplingk, the proton-centered or the ion-centered kink c
reach a global minimum of the energyEm.0 ~except for the
ground states, whenE50). In addition, it is interesting to
notice that at the values ofk given by Eqs.~19!, the inter-
bond and the intrabond energies are exactly equal each o

B. Numerical results for finite b ’s

Now let us investigate how the properties of the ki
solutions found in the exactly solvable limitb→` change
when b take finite values. Thus, changingb allows us to
explore the whole set of scenarios, starting from thef4 limit
and finishing with the limitb→`. We start to compute the
kink solutions from the anticontinuous limit (k50), taking
the solutions of the exactly solvable limit as an initial gue
for the Newton iteration method. Then, we increasek and
check how the kink profiles behave. In Fig. 5, the ene
dependence on the coupling parameterk is plotted for b
510. First, let us focus on the behavior of the solutions w
the lowest energies~namely, those that correspond tom50
and m51 in the exactly solvable limit!. In Fig. 5, curve 1
corresponds to the ion-centered kink withm50, the symme-

FIG. 4. Dependence of the kink energyEm , m50, 1, 2, 3, and
4, given by Eq.~18!, in the exactly solvable limitb→` on the
coupling parameterk.
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try of which is given by Eqs.~13!, whereas curve 2 corre
sponds to the proton-centered kink withm51, the symmetry
of which is given by Eqs.~14!. Contrary to previous knowl-
edge on the stability properties of the kink solutions for t
discrete sine-Gordon andf4 models, where the~anti!kinks
of symmetry~13! are always dynamically stable, while th
~anti!kinks of symmetry~14! are always dynamically un
stable, an interchange of stability is observed for the pro
potential ~6! with finite b ’s as k varies. Thus, one can se
that at a certain value of the coupling parameter,k.24.5,
the energies of both the types of symmetric kinks coinci
and after passing this critical point, the proton-centered k
appears to be stable, while the ion-centered kink is unsta
For higherk ’s, several more interchanges of stability ta
place, with the energy difference between the sequential k
states which decreases with the growth ofk. These transi-
tions of stability take place smoothly all the way up to t
continuum limit. We refer to these transitions asstability
switchings. Thus, the solutions withm.1, which were
clearly separated from them50 and them51 solutions in
the exactly solvable limitb→`, appear to be smoothly con
nected with them. In other words, while the couplingk in-
creases, the particles slowly ‘‘climb’’ on the barrier, so th
there is no abrupt transition from the state withm50 to the
state withm52 or, further, to the states withm54,6, . . . .
The same can be concluded about the kinks withm being
odd. In this respect, the system still shows a similarity to
f4 model.

If we focus more carefully on the behavior of the syste
in the vicinity of the points, where the energies of proto
centered and ion-centered kinks become equal, we find th
different type of kinks appears. These kinks shown in Fig

FIG. 5. Dependence of energy forb510 on couplingk for
symmetric ion-centered kink~curve 1!, symmetric proton-centered
kink ~curve 2!, and zigzag-like kinks~curves 4 and 5!. The inset
shows more detailed behavior in the vicinity of stability switchin
and curve 3 corresponds to the kink with asymmetric profile. So
lines correspond to stable states and dashed lines to unstable
3-5
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KARPAN et al. PHYSICAL REVIEW E 66, 066603 ~2002!
do not exhibit any of the symmetries defined by Eqs.~13!
and ~14!, but they are doubly degenerate, related to e
other by the inversion with respect to the crossing point
tween the lineun50 and the line connecting two centr
particles of the kink@n548 andn549 in Fig. 6~a!#. The
energy of these kink states with broken symmetry is alw
larger than the energy of the symmetric~ion-centered and
proton-centered! kinks. The asymmetric~anti!kinks are al-
ways linearly unstable. In Fig. 5, their energy is shown
curve 3.

The kinks of the last type are shown in Fig. 5 by curve
and 5. This is what happens to the solutions withm.1 ob-
tained in the limitb→`, when we are moving from the
anticontinuous limit (k50). Instead of attaining a regula
monotonic form, the kink profiles with several particles
the barrier develop a zigzaglike structure in their centers
demonstrated by Fig. 7. For finiteb ’s the zigzaglike solu-
tions are linearly unstable and therefore we do not st
them here in more detail.

Instead, we focus on the behavior of themonotonickink
solutions with the increase of the couplingk in the vicinity
of the stability switchings. To understand this effect better
Fig. 8 we have plotted the position of the (N/2)th proton (N
is the total number of H bonds in the chain! as a function of
the couplingk. Here the sequence of pitchfork bifurcation
is clearly seen. Curve 1 corresponds to the kink centere

FIG. 6. Profiles of monotonic asymmetric kinks withb510 and
k524. Inversion of these profiles is clearly seen from compari
of panels~a! and ~b!.

FIG. 7. Zigzaglike kink profiles forb510 andk58: ~a! ion-
centered and~b! proton-centered kinks.
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the middle of the (N/2)th bond, i.e., when the (N/2)th proton
is always a central particle of the kink withuN/2[0. The
displacements of the (N/2)th proton for the ion-centered
kinks positioned on the (N/211)th and the (N/2)th ions are
shown by curves 2 and 3, respectively. When increasingk,
the (N/2)th proton moves slowly out of the well. At a certa
value of k, more specifically, atk.22.5, the pitchfork bi-
furcation of the proton-centered kink takes place. This c
figuration retains its stability and two new solutions~both
linearly unstable! appear. These are precisely those asymm
ric kinks ~see curves 4 and 5 in Fig. 8!, with their shape
shown in Fig. 6. At the beginning, they look like slightl
distorted proton-centered kinks, but with the growth ofk,
they change more and more towards the ion-centered
figuration. Eventually, the second pitchfork bifurcation tak
place at k.26.2. The asymmetric kinks join the ion
centered kinks~junction of curves 3 and 4, and curves 2 a
5! and the ion-centered configuration loses its stability.

Now one can clearly see that two identical kinks, shift
by one lattice spacing with respect to each other, are c
nected via such a bifurcation sequence. Thus, this pitch
bifurcation is nothing but a transition of the kink from on
position to another position, one lattice period forward
backwards. This cascade of bifurcations can be contin
further up or down inun’s or, in other words, two or more
sites backwards or forward. A similar bifurcation scenario
discrete breathers in the ac-driven and damped Klein-Gor
lattice has been reported in Ref.@29#.

For higher values ofb, the effect of stability switchings
exists, being more pronounced because the switchings
at smallerk and take place more frequently~see Fig. 9!.
Another feature that appears from the exactly solvable li
b→` is as follows. Curve 1 of Fig. 9 corresponds to t
ion-centered kink and curve 2 to the proton-centered ki
They cross each other atk.17.4, where the ion-centere

n

FIG. 8. Dependence of the displacement of the central part
from equilibrium~at uN/250) on the couplingk for proton-centered
~curve 1!, ion-centered~curves 2 and 3!, and asymmetric~curve 3!
kinks with b510. Solid lines show stable kinks and dashed lin
show unstable ones.
3-6
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DISCRETE KINK DYNAMICS IN HYDROGEN-BONDED . . . PHYSICAL REVIEW E66, 066603 ~2002!
kink loses its stability, disappearing shortly atk.28.6. Here
the same pitchfork bifurcation scenario takes place, but
distance between the first and the second bifurcation
much larger than in theb510 case. In the meanwhile, a b
earlier, atk.23.4, a new family of ion-centered kinks ap
pears~curve 4!. This curve corresponds to the ion-center
kinks with two protons on the barrier. Thus, one can obse
the coexistence of two different kink solutions with the sa
type of symmetry~for more details see the upper inset of F
9!. This coexistence takes place on a rather narrow inte
of k and one of the coexisting kinks is unstable, but still th
phenomenon clearly originates from the limitb→`.

In Fig. 10, we show the shape of two coexisting kink
One of them~more narrow! corresponds to curve 1 of Fig.
and the second one, which is more broad, correspond
curve 4 of this figure. These kinks have zero and two prot
on the barrier, respectively. Whenk increases further, the
stability switchings occur between curves 2 and 4 under
same scenario as before forb510 ~see for details the lowe
inset of Fig. 9!. Zigzaglike kinks are also presented in th
case, as shown by curves 6–8.

FIG. 9. Dependence of the kink energy forb520 on the cou-
pling k ~see text for details!. The solid line shows stable states a
the dashed lines show unstable ones.
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By increasingb even more, the coexistence of differe
kinks with the same symmetry is even more pronounced.
have checked the case ofb550 and discovered for this valu
that several cases of this coexistence for different kinks t
place and they are much more pronounced. Thus, this ca
rather close to the exactly solvable limitb→`.

C. Analytical approximation for finding kink solutions

One can use a simplification of the potential~6! in order
to obtain analytically an exact~anti!kink solution. To this
end, we approximate both the wells of the potential by p
rabolas connected by a constant equal to the barrier heig
follows:

V~u!.H ~v0
2/2!~u1a!2, 2`,u,2b

1, 2b<u<b

~v0
2/2!~u2a!2, b,u,`

~20!

where b5a2A2/v0 . A schematic description of this
‘‘parabola-constant’’ approximation is presented in Fig.
by thick solid lines. The thin solid lines show the origin
potential~6! with b520. The approximation is expected t
work well, when the barrier is flat enough, i.e., whenv0

@A2/a. Within this approximation, we are able to solve th
problem of finding stationary kink solutions analytically.

Let m50,1, . . . be thenumber of protons on the barrie
of the potential~20!. Then the discrete kink profiles are give
by

FIG. 10. Kink solutions corresponding to curves 1 (s) and 4
(1) of Fig. 9 for k525.
un5H 2a1Amel(n2n01m/211) if 2`,n<n02m/221

~n2n011/2!Dm if n02m/221,n,n01m/2

a2Ame2l(n2n02m/2) if n01m/2<n,`

~21!

for the kink centered on then0th ion (m50,2, . . . ) and

un5H 2a1Amel[n2n01(m11)/2] if 2`,n<n02~m11!/2

~n2n0!Dm if n02~m11!/2,n,n01~m11!/2

a2Ame2l[n2n02(m11)/2] if n01~m11!/2<n,`

~22!
3-7
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KARPAN et al. PHYSICAL REVIEW E 66, 066603 ~2002!
for the kink solution centered on then0th H bond (m
51,3, . . . ). Herel is a ‘‘localization’’ parameter that mea
sures the transition width in the~anti!kink profile between
the uniform distribution of protons on the barrier and t
~anti!kink asymptoticsun→6a. It is given by a positive root
of the equation

coshl511v0
2/2k. ~23!

The other two parameters, the amplitudeA and the uniform
distance between the nearest-neighbor protons on the
barrier,D, can be expressed through the localization para
eterl as

Am5
2a

~m11!el2m11
,

Dm5
2ael

~m11!el2m11
. ~24!

As follows from Eqs.~10! and ~23!, the limit l→` ~when
v0

2/k→`) is more general than the limitb→` becausel
contains bothb and k. Therefore one can check that Eq
~21!–~24! are reduced to the stationary kink solution giv
by Eqs.~15! and ~16! asl→`. In particular, the amplitude
Am and the distance between the protons on the barrierDm ,
tend to zero and 2a/(m11), respectively.

Using Eqs.~21!–~24! one can easily compute the ener
of both the kink configurations:

Em5m12ka2
tanh~l/2!

11mtanh~l/2!
. ~25!

Similarly, this expression is also transformed to the ene
~18! asl→`.

Now we investigate the behavior of the energy differen

DEm11~k,b!5Em112Em , m50,1, . . . . ~26!

We find that this difference as a function ofk has a number
of zeros, and these zeros depend on the parameterb. Thus,

FIG. 11. Schematic representation of the approximate pote
~20!.
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within our approximation one can predict the effect
switching of the stable and unstable kink configurations.
Table I, we show the values of the coupling parameterk, for
which the first @i.e., whenk5k1 and m50; see also Eq.
~19!# switching of the kink stability takes place.

We see that the approximation works fairly well whenb
is rather large and the barrier between the wells is close
being completely flat. It improvres with the increase ofb,
and in the limitb→`, our approximation coincides with th
exact result, shown above. Thus, the switching of the sta
ity of kink states with different symmetries is a generic effe
that does not depend on a specific model, but on the pro
ties of the on-site potential. Another piecewise approxim
tion of the proton potentialV(u) for a HB chain has been
constructed earlier by Weiner and Askar@30#, using alterna-
tively inversed parabolas. Our potential approximation~20!
seems to be more appropriate for the detailed studies of
ness effects of the on-site~intrabond! potential and more
close to the realistic double-Morse potential~6! if b is not so
small.

Note that the zigzaglike kink profiles obtained above, n
merically shown, e.g., in Fig. 7, can also be given analy
cally within the approximation~20!. Indeed, the ion-centere
kink shown in Fig. 7~a! is described by

un5H 2a1B0el(n12), n522,23, . . .

u052u215j0

a2B0e2l(n21), n51,2, . . . ,

~27!

whereas the proton-centered profile illustrated by Fig. 7~b! is
given by

un5H 2a1B1el(n12), n522,23, . . .

u050, u152u215j1

a2B1e2l(n21), n51,2, . . . ,

~28!

wherel is given by Eq.~23! and

Bm52a
el1e2l2m/221

el~el2m11!
,

jm5a
32el22e2l

el2m11
, m50,1. ~29!

al

TABLE I. Comparison of numerically and analytically calcu
lated values ofk for which the first (m50) stability switching
occurs.

b k1 , numerical k1 , analytical

5 64.10 18.0
10 24.547 17.069
20 17.383 16.329
50 16.172 16.052
` 16.0 16.0
3-8
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DISCRETE KINK DYNAMICS IN HYDROGEN-BONDED . . . PHYSICAL REVIEW E66, 066603 ~2002!
Using the last equations, the kink energy can be calculate
a similar way as the energy~18!. In the limit l→`, the
energies of the zigzaglike kinks, the profiles of which a
illustrated by Fig. 7, become

E056ka2 and E15115ka2. ~30!

These expressions clearly show that for these type of kin
their energies can also coincide for certain values of coup
k if b ~and, consequently,l) is large enough.

D. Elementary excitations on the kink background

Let un
(0) be a stationary kink solution of Eq.~11!, i.e., a

fixed point of the map~12!. We are interested in the prope
ties of small-amplitude excitations on the kink backgroun
Linearizing Eq.~9! around the stationary kink solution ac
cording to

un5un
(0)1AneiVt, ~31!

we arrive at the eigenvalue problem

L̂A5LA, A5$ . . . ,An21 ,An ,An11 , . . . %. ~32!

Here the operatorL̂ @the Hessian of the Hamiltonian Eq.~5!#
acts on a vectorA as

~ L̂A!n52k~An1122An1An21!1VnAn , ~33!

whereVn5V9@un
(0)#. The operatorL̂ is a symmetric~so all

eigenvalues are real! tridiagonal matrix and the spectral pa
rameter isL[V2. This eigenvalue problem can be treated
a quantum-mechanical problem of a particle, trapped i
single-well spatially discrete potential formed by the kink.
depth depends on the curvature or flatness of the proton
tential in the middle of the H bond,V9(0), andtends tov0

2

asn→6`.
The eigenvalues of the problem also give informati

about the linear stability of the kink solution. If there exis
at least one eigenvalueL5V2,0, the linear excitation on
the kink grows exponentially in time and the correspond
kink solution is linearly unstable. Otherwise, it is linear
stable. The stability of stationary kink solutions is det
mined by the system parameters~in our case, by the curva
ture or flatness parameterb and the couplingk).

In Fig. 12, we depict the dependence of the eigenfrequ
cies Vn’s on the coupling parameterk for different curva-
tures b. The spectrum consists of two parts. The first o
describes the eigenfrequencies that lie above the potentiaVn
and therefore determine delocalized eigenvectors co
sponding to the linear~phonon! spectrum of the lattice. The
second part consists of eigenfrequencies that lie belowv0

2

corresponding to spatially localized eigenvectors. The low
eigenfrequency is the Goldstone mode, which is univers
presented in all the Klein-Gordon models. In the continu
models this frequency is exactly zero. In the correspond
discrete models, its value tends to zero ask→`. The second
mode corresponds to small-amplitude oscillations of the k
core, often being referred to as the Rice mode. In the c
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tinuum f4 model, there are only two localized modes: t
Goldstone mode and the Rice mode. The properties of
internal modes can be significantly altered due to differ
factors such as change of the nature of the interparticle
teraction@31# or change of the shape of the on-site poten
@32#. If b is not so large, the behavior of the eigenfreque
cies and eigenvectors~see Fig. 13! of our system is reminis-
cent to that of thef4 model, as shown in panels~a! and~b!
of Fig. 12. However, several differences occur. Thus,
Goldstone mode collides with the zero axis and becom
unstable@see Fig. 12~a!# for the ion-centered kink. Mean
while, for the proton-centered kink@see Fig. 12~b!#, the

FIG. 12. Dependence of the system eigenfrequenciesVn on the
coupling parameterk for b55, ~a! ion-centered and~b! proton-
centered kinks; and forb510, ~c! ion-centered and~d! proton-
centered kinks. Curves depicted by small dots correspond to c
whereVn’s are purely imaginary and therefore ImVn’s are plotted
instead~see text for details!.

FIG. 13. Example of eigenvectors for the case withb510 and
k510. For the ion-centered kink:~a! the eigenvector of the lowes
localized mode and~b! the eigenvector of the first excited localize
mode. For the proton-centered kink: the eigenvectors of~c! the
lowest,~d! the first, and~e! the second localized modes.
3-9
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KARPAN et al. PHYSICAL REVIEW E 66, 066603 ~2002!
Goldstone mode was initially unstable and became sta
later on. The stability switchings are caused by the pitchf
bifurcations as described at the beginning of this sect
Another difference is the appearance of the new eigen
quency for the proton-centered kink with the eigenvector t
has two nodes@see Fig. 13~e!#.

Thus, one can see that curvatures play an important
in the properties of the eigenfrequencies of our system.
creasingb further, we observe more pitchfork bifurcations
the Goldstone mode and the appearance of more loca
modes. In panels~c! and~d!, we show how the eigenfrequen
cies behave forb510. We observe more localized intern
modes, some of them surviving in the continuum limit a
some of them disappearing there. In addition, we note a s
lar influence of the long-range parametera of the interpar-
ticle interaction in the sine-Gordon model@31# on the corre-
sponding linear spectrum, if the strength of this interactioJ
is not so large, i.e.,J,1/2. More precisely, as demonstrate
by Fig. 8 of Ref.@31#, with the decrease ofa, the number of
internal localized modes increases.

The shape of the corresponding eigenvectors~see Fig. 14!
behaves according to the wave-function shape of the bo
states of the quantum-mechanical Schro¨dinger equation.
Here and in Ref.@31#, we also observe the close similari
between the eigenvector’s shape~cf. Fig. 9 of this reference
and Fig. 14 of the present work!.

IV. PROPERTIES OF THE PEIERLS-NABARRO BARRIER

In general, the propagation of topological solitons~kinks
and antikinks! in lattices are subject to their discreteness. T
discreteness effects can be described by a spatially per
potential, with the period coinciding with the lattice spaci

FIG. 14. Example of eigenvectors forb510 andk530: ~a!–
~d!, eigenvectors of the localized modes for the ion-centered k
from the lowest to the highest mode;~e!–~g!, the same for the
proton-centered kink.
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l, known as a Peierls-Nabarro~PN! potential. The PN poten-
tial EPN(nc) is a function of the kink center position

nc5(
n

n
un112un21

2~u`2u2`!
5

1

4a (
n

n~un112un21!,

~34!

and the height of the PN barrier equals

dE5E~nc,max!2E~nc,min!. ~35!

This difference measures the activation energy for
kink propagation through one lattice spacing. Herenc,max
andnc,min are the positions of the kink, where the PN pote
tial has its maxima or minima, respectively. The minimu
position nc,min coincides with the kink position, which is a
global minimum of the kink energy. Thus, normallync,min is
an integer or a half-integer.

It is a well-established fact that for thef4 and sine-
Gordon models, the height of the PN barrier coincides w
the difference between the energies of the proton-cente
and ion-centered kinks. As demonstrated above, the defor
tion of the proton~intrabond! potential V(u) leads to the
switching of stability of these two states. This does not me
however, that the PN barrier disappears, when the energ
these states coincides because the site-centered and pr
centered states do not represent the states with the hig
and the lowest energy of the PN potential@17,18,32#.

In Fig. 15, some examples of variation of the ener
EPN(nc) for different values ofk are presented. Panel~a!
corresponds to the situation when the proton-centered kin
an energy minimum and the ion-centered one reache
maximum. The second panel~b! demonstrates the case whe
the first pitchfork bifurcation occurs and the asymmetric ki

k FIG. 15. Peierls-Nabarro potentialforb510 and~a! k570.5,
~b! k571.22, ~c! k571.288,~d! k571.35, and~e! k572.
3-10
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DISCRETE KINK DYNAMICS IN HYDROGEN-BONDED . . . PHYSICAL REVIEW E66, 066603 ~2002!
appears. Panel~c! corresponds to the case when the stabi
switching happens and both the proton- and ion-cente
kink states get minima, and the asymmetric kinks
maxima. The period of the PN potential is decreased by o
half. After that, as shown in panel~d!, the proton-centered
kink becomes unstable and the ion-centered one stable.
last panel~e! is obtained after the second pitchfork bifurc
tion has occurred and the asymmetric kinks disappear.

Dependence of the PN barrier is nonmonotonic not o
in k but also inb. In Fig. 16, we show the dependence of t
PN barrier on the parameterb for a fixed value ofk. We
observe a minimum atb.8.3, which is obviously caused b
the stability switching. Indeed, as shown by the upper in
the minimum of the PN potential moves from a half-integ
value to an integer one. Thus, the stable kink configura
changes from the ion-centered to the proton-centered k
Note, that the height of the PN barrier does not attain z
~see the lower inset!, but decreases by two orders of magn
tude.

V. DISCRETE KINK MOBILITY

Another interesting consequence of the deformation of
on-site potential barrier is the possibility of the existence
nonoscillating traveling kinks. In the continuum Klein
Gordon models which admit moving topological solito
~kinks and antikinks!, the domain of admissible soliton ve
locitiess is the interval 0<s,c0 , wherec05Ak is the char-
acteristic velocity. Thus, kinks in these continuum mod
are a one-parametric family of solutions with the kink velo
ity s as a parameter. In a general case of the discrete Kl
Gordon model, this family is reduced to adiscreteset of
traveling kink solutions with some velocitiess0 , s1 , . . . ,
sk , s050, sk,c0 . In the f4 and the sine-Gordon models
there exists onlys0 . In general, everywhere in betweensn’s,
there exist moving kinks withoscillatingasymptotics known
as nanopterons. The existence of velocitiessnÞ0 has been
shown both numerically@18# and analytically@20,21# for

FIG. 16. Dependence of the height of the PN barrier on
parameterb for k530. The upper inset shows the shape of the
barrier before the minimum atb57.8 ~curve 1! and after the mini-
mum at b58.8 ~curve 2!. The lower inset shows more detaile
behavior ofdE around its minimum.
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several models. This effect is due to the properties of
on-site ~intrabond! potential V(u) and, more precisely, the
flatness of its barrier which, in its turn, causes the stabi
switchings described in the previous sections.

For finding nonoscillating kink solutions, we have used
pseudospectral method@33#. The method allows us to find
the traveling-wave kink solutions of the type

un~ t !5u~n2st![u~z!, ~36!

solving the differential equation with advanced and de
terms:

s2u9~z!5k@u~z11!22u~z!1u~z21!#2V8@u~z!#.
~37!

The dependence of the kink velocity on the coupling para
eter k is shown in Fig. 17. As follows from this figure, i
starts~see curve 1! at the value ofk, which is close to that
when the pitchfork bifurcation takes place~see Fig. 8!. Then
the velocity grows withk. The second velocity dependenc
starts atk, being close to the point of the second pitchfo
bifurcation.

Dependence of the kink velocity on the parameterb has
similar behavior, as demonstrated by Fig. 18. It is interest
to note that the value of the velocity of the moving kink do
not decrease down to zero ask or b decreases, but stops a

e
FIG. 17. Normalized velocity of the nonoscillating kink motio

against the coupling parameterk for b510.

FIG. 18. Normalized velocity of the nonoscillating kink motio
against parameterb for k5120.
3-11
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KARPAN et al. PHYSICAL REVIEW E 66, 066603 ~2002!
some finites instead. This means that the kinks should ha
sufficient kinetic energy to overcome the pinning effects.

In Fig. 19, we plot the profilesu(z) of the moving kinks
that correspond to both the curves of Fig. 17. The profile
panel ~a! corresponds to the moving kink from curve
whereas the profile in panel~b! corresponds to the kink from
curve 2. In both the cases, the coupling constant was
same:k5100. The second kink appears to be wider and t
can be explained by the fact that its velocity is more than t
times smaller. The insets of the figures show the veloc
profiles.

In Fig. 20, we investigate the behavior of moving kin
for different b ’s. The increase in the barrier flatness is r
flected in the change of the shape at the kink center. We h
considered the kinks corresponding to curve 2 of Fig.
when the coupling is fixed:k5120. The deformation of the
kink profile can easily be seen in the velocity profile sho
in the inset. The kink profile experiences the deformation
its slope part, which is seen as a dip in the velocity profi
The dip grows with increasingb. More flat the barrier be-
comes, more the possibilities of the deformation of the kin
profile.

These results demonstrate that the existence of a finite
of velocities at which the kink can move with a consta
shape is a generic effect. Its appearance is due to the sha
the on-site~intrabond proton! potential. If the proton poten
tial has a barrier which is flat enough to allow the symme
switchings~accompanied by the pitchfork bifurcations!, the
Peierls-Nabarro barrier experiences lowering for specific v
ues of the system parameters. Thus, it becomes possible
the kinetic energy of the kink is sufficient to overcome t
pinning forces of the lattice.

VI. CONCLUSIONS

We have studied the dynamics of the one-dimensio
Klein-Gordon lattice with the on-site potential of the doub
Morse type. This is a physically motivated model, which
the simplest one for the proton transport in a hydrog
bonded chain, where the on-site potential plays the role

FIG. 19. Examples of moving antikinks atb510 andk5100
with velocities ~a! s56.227 and~b! s52.463. Circles show posi
tions of lattice sites.
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the potential for proton transfers in the hydrogen bon
Therefore throughout this paper we call it an intrabond p
ton potential. A Morse-type function was found to offer th
best combination of accuracy in reproducing quantu
mechanically computed potentials@24,25#. The model has
two parameters, the proton-proton couplingk and the anhar-
monicity of the Morse potential, the curvature parameterb.
The anharmonicity parameter is responsible for the shap
the intrabond potentialV(u), especially on the convexity o
its barrier. For largerb, the barrier becomes more flat an
the wells become more narrow. Changing this parameter,
can explore the variety of possible intrabond potentials, st
ing from the f4 model ~as b→0) and finishing with the
exactly solvable limitb→`.

The deformation of the barrier of the intrabond potent
becomes crucial for the properties of the stationary kink
lutions. While thef4 limit allows us onlytwo types of sta-
tionary kinks: ion-centered and proton-centered with th
stability properties being constant for any couplingk, the
opposite limit shows the existence of an infinite countable
of stationary kink solutions. For some values of the coupl
k forming an infinite countable set, the states with differe
symmetries can have the same energy. In between these
limiting cases, some of the kink properties survive from t
exactly solvable limitb→`. First of all, the stability prop-
erties of the kink solutions depend drastically on the co
pling parameterk. With the increase ofk, the initially stable
ion-centered kink becomes unstable, while the prot
centered kink gets stable. With further increase ofk, these
stability switchings, which are, in fact, pitchfork bifurcations

FIG. 20. Examples of moving antikinks atk5120: ~a! b512
and s54.154, ~b! b515 ands54.551, ~c! b520 ands54.734.
Circles show positions of lattice sites.
3-12
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DISCRETE KINK DYNAMICS IN HYDROGEN-BONDED . . . PHYSICAL REVIEW E66, 066603 ~2002!
occur several times. Another result can be seen for ra
high b, at least forb.20 in our calculations. It is the coex
istence of several kink solutions of the same symmetry
the samek. This is a leftover from the exactly solvable lim
and it disappears with loweringb. An analytical approxima-
tion has been constructed to show the effect of the symm
switchings analytically and to confirm that the effect is n
confined to a specific model but has a universal nature.

The stability switchings contribute to the nonmonoton
behavior of the Peierls-Nabarro~PN! barrier. The barrier de-
cays with the increase ofk, however, it experiences loca
minima at the stability switching points, where its value d
creases by one order of magnitude. The same happens fo
dependence of the PN barrier onb. This phenomenon, in its
turn, assists the kink mobility and leads to the appearanc
a finite set of velocities for which the propagation of ve
narrow kinks is possible. This is a generic effect, attribut
to the shape of the on-site~intrabond! potential, and also is
not confined to a specific model. Note that the PN barrie
not required to vanish completely~see Ref.@21#!. Simply, the
barrier is low enough for the kinetic energy of the kink
carry it over the barrier.
,
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Thus, we have concluded that highly mobile kinks a
possible in our model of the proton transport in hydroge
bonded chains, even for those proton-proton near
neighbor interactions where the proton kinks are very n
row. This gives us a reason to believe that the soli
mechanism of proton transfers can work for physically re
sonable values of the proton-proton couplingk. Finally, it
should be mentioned here that our study is concerned w
the bifurcation scenario forstaticanddiscretekink solutions
in the nonlinear Klein-Gordon family, whereas the bifurc
tion theory ofstationarytraveling-wave solutions in the con
tinuum limit for this family was previously developed b
Büttiker and Thomas@34,35#.
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